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The structural phase diagram of electrorheological (ER) fluids as a function of dimensionless parameters \
(the ratio of the dipolar force to the Brownian force) and Pe (the ratio of the shear force to the Brownian force)
is constructed. In the phase diagram, there exist three single phases: a layerlike or chainlike crystalline phase
(C), a shear-string phase (S), and a liquid phase (L). Between these single phases two phase coexistence zones
of C+ S and C+L are located. The transitions between the phases are driven by the competition between the
dipolar, shear, and Brownian forces. In the different phase zones, the viscosity of the ER fluid has different
dependencies on Pe and . The observed structures and corresponding rheological properties are discussed.

PACS number(s): 83.80.Gv, 83.20.Jp, 83.20.Hn, 83.50.Ax

I. INTRODUCTION

In view of their great potential in industrial application,
electrorheological (ER) fluids have stimulated considerable
interest in recent years [1]. A typical ER fluid is a colloidal
suspension of fine dielectric particles in a low conductive
liquid [2-4]. In the presence of a large electric field, chain-
like or columnlike structures are formed parallel to the field,
and dramatical changes of the rheological properties of the
suspension such as stress and viscosity occur in a few milli-
seconds.

The structure is a key to understanding the physical
mechanism of this phenomenon. At present a few three-
dimensional (3D) simulations of ER fluids in the static state
(without shear flow) have been reported. Although Hass
found that a regular lattice was not formed in his 3D simu-
lation [5], a simulation by Tao revealed that a body-centered-
tetragonal (bct) structure formed as a result of the Brownian
and dipolar forces [6]. In fact, most ER fluids are employed
in the dynamic state (under shear flow). For these cases,
simulations should accurately account for the hydrodynamic
interaction. Methods for the complete treatment of hydrody-
namic force have been developed. However, the treatment is
computationally expensive, limiting studies to a small 2D
system of 25 particles [7]. To understand structures in the
sheared suspension, it is necessary to retain three dimen-
sions. Equally important, to obtain accurate statistics it is
necessary to simulate a large number of particles with exten-
sive averaging. We have therefore abandoned such compli-
cated hydrodynamic effects and adopted, like other authors
[8-11], an idealized O(N?) algorithm: free draining particle
suspensions with uncorrelated Brownian motion subjected to
a homogeneous shear flow. Because of the simplicity of this
algorithm, we can simulate many particles in 3D and pre-
serve the essential symmetries of the particle interactions and
the shear flow. Melrose [11] investigated the nonequilibrium
phase diagram of ER fluids by applying an increasing elec-
tric field to a suspension already sheared at a fixed shear rate.
Four distinct phases existed: the layered phase, shear-string
phase, and two kinds of liquid phases. However, the curva-
ture in the boundaries between the phases and the meeting of
the phases were not resolved. In the present work, we adopt
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another trajectory to explore the 3D structures and rheologi-
cal properties of ER fluids: that is, by applying a shear with
different shear rate into a suspension which is already ex-
posed to a fixed electric field. This procedure is equivalent to
the experimental situation of applying an electric field to a
suspension at zero shear rate for a certain time prior to ap-
plying the shear.

II. MODEL

An ER fluid is modeled here as a neutrally buoyant sus-
pension of spherical particles with diameter o and dielectric
constant &, in a nonconductive solvent of dielectric constant
g, and viscosity 7. The fluid is confined between two
parallel-plate electrodes with a separation L,. The homoge-
neous shear flow is placed on the ER fluid by sliding the top
electrode. The full computational geometry is summarized in
Fig. 1, where z is chosen as the direction of an applied elec-
tric field Eye,, x the direction of an imposed shear flow at a
rate e, , and y the direction of the vortical axis. The two unit
vectors e, and e, are parallel to and perpendicular to the line
joining the two particles, respectively, and 6; is the angle
between e, and e,. For simplification, we assume that the
particles freely rotate in the shear flow, and remain polarized
along the z direction. Before the application of an electric
field, the particles are randomly distributed in the fluid.
When the field is applied, each particle acquires an induced
dipole moment P =,Baf((f/2)3Ek,C , where B= (ep—sf)/
(e,+2¢y) and E,, is the local field, E,.=Ee, if B<1. The
motion of the ith particle is described by [10]

FIG. 1. The computational geometry.
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md?*r;1dt*=F,—3mwon(dr;/di—yz,e)+R;, (1)

where m is the mass of the ith particle and r; its position at
time ¢. F; is the interparticle force on it, including both the
long-range dipolar and short-range repulsive forces;
—3mon(dr;/dt— yz;e,) is the Stokes drag force and R; is the
Brownian force, both acting on it through the solvent. The
dipolar force on the ith particle due to a particle at r; is

F=[3p%/(e;r{)1[(1-3 cos’6;)e,~sin(26;))e,], (2)

.where rl-]:[(x,-—xj)2+(yi—yj)2+(zi—zj)2]l/2. A particle can
produce an infinite number of reflected images about the
electrodes. The force between a particle and an image has the
same form as Eq. (2). F?j’ is the summation force on particle
i due to the images of particle j. To simulate the hard spheres
and the hard sphere/hard wall interactions, we introduce an
exponential short-range repulsive force between particles i
and j,

FiP=[3p?/(gr};) Jexp[ — 100(r;;/o—1)]e,, (3)
and between particle i and the two electrodes
F4'=([3p*/(8/2])]
Xexp[ —100(z; /o —0.5)]1—{3p*/[e (L.~ z,)*1}
Xexp{—100[(L,—z;)/c—0.5]})e,. “)

Unlike Melrose’s simulation [11], the repulsive force is de-
pendent on the dipolar interaction. Now F; in Eq. (1) is given
by F,=S,,,(F,+F )+ F& +F'". The Brownian force
R, is determined independently by a normal distribution with
(R; &»=0and (R,—ya(O)Ri,B(t)) =6mkpTond,s8t), where kg
is Boltzmann’s constant and T is the temperature. We scale
Eq. (1) by defining dimensionless quantities: r¥=r;/o,
t*=t/(3mypalkyT), R¥*=R;/(kgT/0), and F¥=F,/(p?/
g70"), so Eq. (1) becomes

[mkgT/(3mno?)?|d*c}/dt*? = \F¥ —dr}/dt*
+8Pezfe,+R¥, (5)

where two dimensionless parameters A= p2/(8f03k gT) and
Pe=37no°%/(8kzT). The N characterizes the ratio of the
dipolar force to the Brownian force, and Pe represents the
dimensionless shear rate setting the ratio of the shear force to
the Brownian force. For most real parameters, the magnitude
in the square brackets of Eq. (5) is very small (~107'9), so
the inertial effect can be neglected. Then Eq. (5) is simplified
as

dr¥/dr* = \F* +8Pez e, + R¥. (6)

According to Eq. (6), in the dynamic state the behavior of the
suspension is dependent on the competition between \, Pe,
and unit 1 (representing the dimensionless magnitude of the
Brownian force), while in the static state it is determined by
the magnitude of A. Equation (6) is integrated with a time
step Ar*<0.001/\ using Euler’s method. A system of
N=200 particles in a box with L*/3=L =L ¥=5 is simu-
lated along many trajectories in the space (\,Pe). At each
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state point, averages are taken over 10* time steps. The par-
ticle volume fraction is 0.28. To examine the structural
changes of the suspension, the top electrode is translated
over 5L, (shear strain above 3) until the suspension comes to
the stable state. Periodic boundary conditions are imposed in
the x and y directions, reflecting boundaries at the electrodes.
During simulation, equilibrium structures in the static
state were probed by the following three order parameters:

1 N
~ 2 exp(ib;-r)

=

where the three reciprocal lattice vectors of the bct lattice
are  b;=(2m/0)(2e,/J6—e,), b,=(2m/0)(2e,//6—e,), and
b;=4me,/0. In these order parameters, p; characterizes the
formation of chains in the z direction, while p; and p, char-
acterize the structure of particle arrangement in the x-y plane.
In the dynamic state, because equilibrium structures can be
pulled into a number of layers in which the particles have a
hexagonal structure normal to the y direction, or shear strings
which form a distorted hexagonal pattern in the y-z plane, the
nonequilibrium structures were examined not only by the
average (p;) which is calculated after p; reduces to the mini-
mum value, but also by the factor [11]

N 2

Syu=N"2| 2 expliM(2m/L¥)y¥]| , (8)

J

where M is the number of layers, and M is <5 due to the box
side length L. The average (p;) reflects the structural
changes after equilibrium chains have broken. S, reflects
the formation of layers, and S,,,=0.5 signals perfect layers.
Rheological properties are monitored by the relative viscos-
ity 7,, which is derived from the stress {7,,) of the particle
interaction averaged over a simulation run,

7,= (T (17). ©)

To study directly the relation between the variation of par-
ticle interactions and different structures of the suspension,
we ignore the hydrodynamic contribution in Eq. (9).

III. RESULTS AND DISCUSSION

Based on an examination of the structures of suspensions
by Egs. (7) and (8) and snapshots at different state points
(\,Pe), the structural phase diagram for our system is con-
structed in Fig. 2. One can see from the figure that there exist
three distinct single phases: liquid (L), shear string (S) and
crystalline (C). In the liquid phase, when Pe=0, the particles
are randomly distributed, and order parameters of the sus-
pension have p;<0.1; while when Pe>0, although in shear
flow short strings of particles can be formed down the com-
pression axis, the distribution of these strings is still random,
and the order parameters are {p,;)<<0.1, (p,)<<0.1, and
(p3)<<0.3. In the shear-string phase, the particles are posi-
tioned in strings which orient along the x direction and pack
side by side into a distorted hexagonal lattice on the y-z
plane. Within each string, there are only three to five irregu-
larly spaced particles. The order parameters are (p;)<<0.1,
0.1<(p,)<<0.23, and 0.1<{p;)<<0.3. The factor S5 decreases
with time, and S,5>S,, (M=2, 3, and 4), and finally
§,5<<0.5. In the crystalline phase, when Pe=0, the particles
either form a one-dimensional ordering gel-like structure
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FIG. 2. The phase diagram: L, liquid phase; S, shear-string
phase; C, crystalline phase; C+S and C+ L, coexistence phases.

with vertical simple chains aligned along the z direction or
condense into a three-dimensional ordering bct lattice struc-
ture. The order parameters are p;>0.1, p,>0.23, and p;>0.5.
When Pe>0, the particles become a two-dimensional order-
ing layerlike structure, which lies in the x-z plane and has a
well-defined layer spacing in the x-y plane. The order pa-
rameters are {p;)>0.1, {p,)>0.23, and (p;)>0.5. When the
applied strain is less than 1, chains of particles within each
layer stretch in the shear flow and are packed so that the
alternate chains in the x direction are offset by half of an
interparticle spacing to form a distorted close-packed-
hexagonal lattice in the x-z plane. When the applied strain is
greater than 1, the layers aggregate into thicker layers. For
the layerlike structure, S5 first decreases and then increases
with time, but S, (M =2, 3, and 4) gradually increases and
even becomes greater than S, indicative of an aggregation
of layers. Finally, the factor of the formed layer is higher
than 0.5. In between these single phases there are the two
two-phase coexistence zones, C+ L and C+S. In the former,
the particles form unstable layers, being perturbed by the
Brownian and shear forces but reformed by the dipolar force;
the factor S, lies between 0.2 and 0.3. In the C+ S zone the
particles aggregate in soft layers, being pulled apart by the
shear force but reformed by the dipolar force; the factor S5
first decreases with time. When the top electrode translates
over 5L,, §,s decreases to its minimum value, then begins
to increase. But the other factors always increase with time,
sometimes even higher than S,5. The maximum of the final
time factor is between 0.1 and 0.5. The order parameters for
the suspension in these two-phase coexistence zones are
(P1)<0.1, (pp)>0.23, and 0.1<(p3)<<0.5 for C+L, and
(p1)<0.1, 0.1<(p,)<<0.30, and 0.3<(p3)<<0.5, or (p;)<<0.1,
{p2)<<0.1, and 0.1<(p;)<<0.3 for C+S. Having defined the
interparticle structures observed, we now examine the
boundaries between the phases and the conditions which lead
to these different structures.

A. Equilibrium structure

We studied the time evolution of a 3D structure in sus-
pension in the static state (Pe=0). The simulation was per-
formed for different values of N\ from the same initial con-
figuration. Figure 3 shows final time configurations of

FIG. 3. Final configurations of suspensions: (a) A=1, (b)
A=1 135000, and (c) A=113.5.

structures developed at three typical values of \. Figure 4
shows the development of p; with time in the above systems.
It is clear that when M\ is small (i.e., A=1), the Brownian
force is comparable to or even greater than the dipolar force.
The suspension has too many vibrations, preventing the for-
mation of a stable structure, so that the suspension is in the
liquid phase regime. In this case, as shown in Figs. 3(a) and
4(a), particles are randomly distributed, and the order param-
eters remain less than 0.1. However, when M\ is very
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FIG. 4. Relationship of p; with time for suspensions: (a) A=1,
(b) A=1 135000, and (c) A=113.5.

large (i.e., A=1 135 000), compared with the dipolar force
the Brownian force is small enough to be neglected. The
suspension becomes trapped into a complicated gel-like
structure shown in Fig. 3(b), which has a rapid perfect order-
ing in the z direction and a weak lateral ordering in the x-y
plane. As shown in Fig. 4(b), the order parameter p; achieves
the maximum value 0.9 only after 1.21 ms, while p, and p;
remain less than 0.4. When \ is moderate (i.e., A=113.5),
although the dipolar force dominates, the Brownian force
cannot be ignored. The suspension condenses into thick col-
umns which possess the bct lattice structure shown in Fig.
3(c). In this case, as shown in Fig. 4(c), the order parameter
p; rapidly reaches the maximum value 0.94, while p; and p,
increase slowly up to the maximum value 0.9. This means
that, following rapid chain formation, the chains aggregate
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FIG. 5. Variation of (p;) with Pe for the A\=3 suspension.

into the bct lattice structure. According to the simulation re-
sults in the static state case, the transition from disorder into
a one-dimensional ordering chainlike structure occurs when
A=1.4, as shown in Fig. 2. Tao calculated the transition from
the liquid state to the chainlike structure to be second order
[12], so there is no two-phase zone between L and C for a
fixed particle volume content ER suspension at Pe=0. For
alumina particles of =2 um in silicon oil at 7=300 K, the
critical electric field for the phase transition is 261.9 V/cm.

B. Nonequilibrium structure

To determine the phases in Fig. 2, we examine the struc-
tural changes of suspensions at different points (\,Pe). Fig-
ures 5 and 6 show the variation of (pj) and S, with Pe for
different A suspensions, respectively. Obviously for the A>5
suspensions, the structures are dependent mainly on the di-
polar and/or shear forces. Figures 7 and 8 show snapshots of
the shear effect on the equilibrium configurations. When Pe
<\/8, the dipolar force is dominant, and suspensions aggre-
gate into the stiff layerlike structure shown in Fig. 7. This
structure allows homogeneous flow between layers because
layers can slide readily in the flow direction. However, when
Pe>\, the shear force is dominant, and the suspensions flow
into the shear-string structure shown in Fig. 8. This structure
gives rise to the free slippage of strings. Between the above
two values of Pe, the shear force is comparable to the dipolar
force. Suspensions form an unstable layerlike structure, and
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FIG. 6. Variation of S, with Pe for the A=113.5 suspension.
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(c)

FIG. 7. Snapshot projections of the layerlike structure from Fig.
3(c) at Pe=1.42: (a) on the x-y plane at shear strain 0.4, (b) on the
x-y plane at shear strain 1.0, and (c) one layer at shear strain 0.4.

the C+ S coexistence phase zone is located there. In simula-
tion, we found that the curves of the boundaries between the
C and C+S phases and between the C+S and S phases
depend on the value of \. With decreasing A, the slope of the
former curve increases, but the slope of the latter decreases.
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FIG. 8. Projection of the shear-string structure after shearing the
equilibrium structure of A=11 350 at Pe=14 187 on the y-z plane.

This phenomenon is reasonable, because the layerlike struc-
ture is caused by the interaction of the strong dipolar force
and the weak shear force, while the shear-string structure is
caused by the interplay of the shear force and the repulsive
force. The repulsive force is dependent on A. With decreas-
ing A, the dipolar and repulsive forces decrease, but the ran-
dom Brownian force increases. To overcome the Brownian
effect and produce the layerlike structure, the maximum
shear force needed at low X\ should be smaller than the value
calculated by the ratio of Pe/\ at high A. But to overcome the
Brownian effect and produce the shear-string structure, the
minimum shear force needed at low A should be greater than
that value calculated by the ratio of Pe/\ at high . Hence,
with decreasing \, the slope of the C to C+S boundary
curve increases, while the slope of the C+S to S boundary
curve decreases. Obviously, such two boundary curves form
a region like the two-phase zone in the phase transition of
isomorphous systems. For A<<1.4 suspensions, the structures
depend on the Brownian and/or shear forces. The continuous
perturbation from the Brownian force makes suspensions in
the liquid phase state. Even at high Pe, no shear string exists,
due to the weak repulsive force. While for the suspensions of
1.4<<\=5, the structures depend on the dipolar and/or the
Brownian and/or the shear forces. When Pe<<A/20, suspen-
sions are mainly controlled by the dipolar force. The vibra-
tion from the Brownian and/or shear interactions is not
strong enough to break down the layerlike structure. How-
ever, when N/20<Pe<<A/4, although layers of particles can
be formed, they are unstable because the dipolar force is
little stronger than the Brownian and shear forces. In this
case, the crystalline phase and liquid phase coexist. Simi-
larly, the slope of the C to C+ L boundary curve increases
with decreasing A\. When A/4<Pe<\, the Brownian and
shear forces become comparable to and/or greater than the
dipolar force. No layerlike structure can be formed due to the
perturbation from the Brownian and shear forces. Suspen-
sions are in the liquid phase state. When Pe>\, the shear
force is much greater than the dipolar and Brownian forces,
so the suspensions have a shear-string structure, and the
slope of the boundary curve of L and § decreases with de-
creasing A.

C. Rheological properties

Rheological properties are associated with the different
structures adopted by the suspension under flow. Figure 9
shows the variation of the relative viscosity with increasing
Pe for the different N\ suspensions. We can see that for the
shear-string phase, the suspension is in a shear thinning pro-
cess: with the increase of Pe the viscosity drops and has a
weak dependence on \. The relationship is n,OCA“/PeB, where
0.96>£3>0.25 and B>a>0. For the liquid phase, the viscos-
ity is only dependent on Pe and 7,%Pe™?, 0.2<pB. With in-
creasing Pe, the viscosity drops rapidly down close to zero.
However, for the layerlike crystalline phase, the viscosity
decreases with increasing Pe for a fixed A, but increases with
increasing N for a fixed Pe. We have the relationship
7,%(\/Pe)?®~0% The value of the index varies with \: from
0.77 at A=2 to 0.96 at A=11 350. For the case of an equal
ratio value \/Pe, the relative viscosity of a shearing bct equi-
librium structure is higher than that of a shearing simple
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FIG. 9. Relative viscosity (7,) against Pe for different A suspen-
sions.

chain equilibrium structure. Since the shear stress is mainly
transmitted through chains and/or strands of particles, the
flow of the layerlike phase is associated with the fluctuation
of viscosity. Figure 10 shows a sequence of viscosity data
against time for a layerlike system of A=113.5 and Pe=1.42.
Figure 11 gives snapshots of a single layer corresponding to
the times indicated by crosses in Fig. 10. We can see that the
regular oscillations of viscosity are correlated with the strain-
reform process observed in the snapshots. The viscosity
maximum corresponds to maximum strain of chains straining
in the flow direction and about to be broken, while viscosity
approximates to zero when chains reform to nearly vertical
chains after breaking. The transitions from the C to C+S
coexistence phase and from the C to C + L coexistence phase
appear in Fig. 9 as discontinuous increases of 7,. In the
C+S and C+ L phases, the viscosity oscillates weakly with
increasing Pe. In our simulation we found that in the C+S
zone the viscosity reaches maximum and minimum values
for a shear strain of 0.4 and 1.15, respectively, and ap-
proaches zero when a shear strain exceeds 3. The dash-dot
curve in Fig. 10 shows this sequence of viscosity for a C+.S
phase at A=113.5 at Pe=25.5.

D. Interpretation of the structures and rheological properties

In the static state, for the A>1.4 suspension, the structure
is determined by minimizing the total electrostatic free en-

—— Pom142
—— Pe=255

relative viscosity

4
shear stran

FIG. 10. Time sequence of the relative viscosity (#,) for the
A=113.5 suspension at Pe=1.42 and Pe=25.5.

i
j I J!

(b)

FIG. 11. Corresponding projections of the particles in a single
layer taken at the time denoted by the crosses in Fig. 10.

ergy. Since the dipolar free energy has its minimum when
two dipoles join together and align in the field direction, the
particles in the suspension first form chains between the two
electrode plates upon the application of the electric field.
Then the chains aggregate via one-dimensional Peierls-
Landau dipole density fluctuation. For the high N\ (i.e.,
A=1 135 000) suspension, the initial process is much faster
than the time in which the system relaxes into the columnar
structure, so the chains aggregate into a distorted kinetically
arrested gel-like structure. For the suspension with moderate
\ (i.e., A=113.5), the initial process slows down. The chains
undergo a two-dimensional phase transition in the plane per-
pendicular to the electric field, and eventually evolve into the
energetically favorable bct lattice. For the A<<1.4 suspension,
the dominant Brownian effect leads to a random distribution
of particles.

In the dynamic state, the observed ordering is governed
by the packing geometry of the particles, which allows flow
in response to the applied strain. The interpretations of the
suspension structures and resulting rheological properties are
given below.

Layerlike structure (C). In this case, the interparticle di-
polar force dominates over the shear and Brownian forces.
(1) For the bct equilibrium structure under a shear, the layer
spacings in Fig. 7(a) suggest that the bct close-packed planes
(110) are slipping layers which lie in the x-z plane, and the
bet [110] direction is in the flowing direction. In the simula-
tion, the order parameters of the bct equilibrium structure is
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FIG. 12. Projections of the layerlike structure obtained by shear-
ing the ideal bct equilibrium structure described (a) on the x-y
plane, (b) on the y-z plane, and (c) on the x-z plane. Only the
particle centers are shown.

less than 1. To verify whether the slipping layers and their
slipping direction are indeed in the bct (110) plane and [110]
direction, we assume an ideal bct structure with p;=1 under
shear. Figure 12 shows the projections of the resulting 3D
layerlike structure on the three coordinate planes. We can see
that this layerlike structure is the same as the layerlike struc-
ture shown in Fig. 7. In the x-y plane, layers stretch in the x
direction and aggregate along the y direction, with a definite
layer separation \/5/ 20. In the y-z plane, each layer projects
into a vertical chain along the z direction. In the x-z plane,
particles within a layer form a close-packed-hexagonal struc-
ture. Obviously, to form such a layerlike structure, the bct
(110) plane must be the slipping layer in the x-z plane, and
the bet [110] direction must be the flowing direction in the x
direction. In the presence of shear, since there exist long-
range dipolar and short-range repulsive interactions between
particles, the registered stacking of the layers [bct (110)
planes] is defined to be ABAB—shown in Fig. 13. In such a

3829

FIG. 13. The registered stacking of layers and the zigzag path
adopted by a particle in the flow field. The particle positions in layer
A are marked by @, and these in layer B by O.

geometric packing, the layers can slip readily, while, within
each layer, the particles must adopt a zigzag path to slide
over neighboring particles, as shown in Fig. 13. This is be-
cause the flow velocities of particles in a layer depend on
their positions in the z direction. The zigzag motion is appar-
ent in our simulation. The solid curve in Fig. 14 shows the
sequence of z; of one particle in the layer of Fig. 7(c). It
seems that the zigzag motion is related to the fluctuations of
the layerlike structure and its viscosity. For the layerlike
structure at constant shear rate Pe, as \ increases, the inter-
action between particles increases, and so does the resulting
viscosity; while for fixed N, as Pe increases, the particle in-
teraction decreases and the resulting viscosity drops. Due to
the dominance of the interparticle dipolar force, particles in
different layers can aggregate during the shearing process,
which leads to the formation of thick layers. (2) For the
simple vertical chain equilibrium structure under a shear,
there also exist an interparticle long-range dipolar force and
a short-range repulsive force. The particles condense into
layers, and the layers stacking into a 3D structure are defined
to be ABAB. Examination of snapshots of the suspension at
A=1 135 000 and Pe=14 187.5 shows that the close-packed
layers lie in the x-z plane, and the non-close-packed direc-
tion is parallel to the flowing direction. Similarly, in the pres-
ence of shear, the layer can slip readily, while within each
layer particles move along a zigzag path to slide over neigh-
boring particles. The resulting structure and rheological
property are the same as that in case (1).

Coexistence of the layerlike and shear-string structures
(C+3S). In this case, the dipolar force is comparable to the
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FIG. 14. Sequence of z; of one particle. The solid curve indi-
cates the particle in the layer; the dashed curve indicates the particle
in the C+ S phase.
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FIG. 15. C+ S structure in the x-z plane when the top electrode
translates over 5L, . Only the particle centers are shown.

shear force, and the interparticle force becomes weaker than
that in the layerlike structure. For the bct equilibrium struc-
tures under a shear, there is weak registration between the
neighboring particles. The particles condense into unstable,
locally distorted, close-packed-hexagonal layers which stack
upon one another with an irregular layer separation. Similar
to the layerlike structure, the unstable close-packed layers
are in the x-z plane, and the nonclose-packed direction
within one layer is parallel to the x direction. In a shear flow,
layers can slide freely, but particles within one layer first take
a zigzag path and then a straight line to move over each
other. This phenomenon is apparent in our simulation. The
dashed curve in Fig. 14 shows z; of a particle in the C+S§
structure with time. We can see that the particle adopts a
zigzag motion prior to being sheared over 5L, and takes a
straight path after that. In the C+ S phase, the dipolar force
is comparable to the shear force. If we do not take account of
the repulsive particle interaction and the zigzag motion of
particles within each layer, according to the simulation cell
geometry, when the top electrode translates over 5L, along
the x direction, the distance of the nearest-neighboring par-
ticles should attain its minimum value o7/2, the strained
chains of particles should return to vertical short chains
along the z direction, and stress and viscosity should drop
down to their minimum values. In fact, however, the repul-
sive force always pulls the particles apart, and the particles
move along a zigzag path to minimize collision. Therefore,
when the top electrode translates over 5L, , the distance of
the nearest-neighboring particles becomes o, the strained
chains grow as the vertical short chains, and the stress and
viscosity decrease to zero. Figure 15 shows such a S+C
structure in the x-z plane by shearing an ideal bct equilib-
rium structure with p;=1 when the top electrode translates
SL,. In this case, the distance of neighboring chains in the x
direction is \/_3_ o, while the distance of neighboring chains in
the y direction is \/5/2 o. The short chains begin to aggregate
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FIG. 16. Depiction of the shear-string structure in the x-z plane.
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FIG. 17. Depiction of the liquid phase structure under a shear in
the x-z plane.

in the y direction, and the factor S s decreases to its mini-
mum value. But because of weak interparticle interaction and
shear force this aggregation is rather weak; some short ver-
tical chains may aggregate and others not, leading to irregu-
lar layer-separation spacings. In this case, other factors may
increase above S,s, but the final time factor maximum
should be less than 0.5. The discontinuous increase in vis-
cosity from the C to C+ S phases results from the breaking
of the structure symmetry. Because the layers are unstable,
the viscosity oscillates instead of decreasing with increase of
Pe. All results are consistent with the case of the shearing
simple chain equilibrium structure.

Shear-string structure (S). In this case, the shear force
dominates over the dipolar and/or Brownian forces. The in-
terparticle interaction will be much weaker than that in the
C+ S structure. There is less registration between the neigh-
boring particles. For the bct and/or simple chain equilibrium
structures under a shear, the close-packed layers and definite
registered stacking have broken down. The randomly spaced
short chains stretch along the -shear flow direction, leaving
strings of particles parallel to the x direction, as shown in
Fig. 16. In such a structure, the strings form distorted hex-
agonal arrays in the y-z plane shown in Fig. 8, and within
each string there are several irregularly spaced particles due
to reduced interparticle registration. The strings and particles
can slip straight along the x direction without collisions, so
the resulting viscosity has weak dependence on N\ and de-
creases with increase of Pe.

Liquid structure (L). In this case, the Brownian force
and/or the shear force are comparable to or even dominant
over the dipolar force. There is rather low interparticle inter-
action, and no registration between the neighboring particles.
For the simple chain and liquid equilibrium structures under
a shear, the particles assume a distorted isotropic distribution
as shown in Fig. 17. In such a structure, since particles lack
interaction, the viscosity of the suspension rapidly drops to
approximately zero as Pe increases.

Coexistence of the layerlike and liquid structures (C+L).
In this case, the dipolar force is not much larger than the
Brownian and shear forces. The interparticle interaction be-
comes weaker than that in the layerlike structure. For the
simple chain equilibrium structures under a shear, the un-
stable local distorted closed-packed-hexagonal layers align
in the x-z plane, but orient to produce the maximum resis-
tance to continuous slipping of layers and of particles within
a layer. Therefore from the C to C+ L phase, the viscosity
does not decrease, the layers tumble in the shear flow, and
the resulting viscosity oscillates with increasing Pe.

IV. CONCLUSION

The structural phase diagram of ER fluids has been con-
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structed. There exist three single phases: layerlike or chain- zones, the viscosities of the suspensions have different rela-
like crystalline phase (C), shear-string phase (S), and liquid  tionships with Pe and A. Interpretations of the observed
phase (L). Between these single phases there are two-phase structures and the resulting rheological properties have been
coexistence zones of C+S and C+L. In different phase discussed.
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